The first step in the purification of most proteins is to disrupt tissues and cells in a controlled fashion. Using gentle mechanical procedures, called homogenization, the plasma membranes of cells can be ruptured so that the cell contents are released. Four commonly used procedures are shown here. The resulting thick soup (called a homogenate or an extract) contains large and small molecules from the cytosol, such as enzymes, ribosomes, and metabolites, as well as all of the membrane-enclosed organelles. When carefully applied, homogenization leaves most of the membrane-enclosed organelles intact.

THE CENTRIFUGE

Centrifugation is the most widely used procedure to separate a homogenate into different parts, or fractions. The homogenate is placed in test tubes and rotated at high speed in a centrifuge or ultracentrifuge. Present-day ultracentrifuges rotate at speeds up to 100,000 revolutions per minute and produce enormous forces, as high as 600,000 times gravity. Such speeds require centrifuge chambers to be refrigerated and evacuated so that friction does not heat up the homogenate. The centrifuge is surrounded by thick armor plating, because an unbalanced rotor can shatter with an explosive release of energy. A fixed-angle rotor can hold larger volumes than a swinging-arm rotor, but the pellet forms less evenly.
DIFFERENTIAL CENTRIFUGATION

Repeated centrifugation at progressively higher speeds will fractionate cell homogenates into their components.

Centrifugation separates cell components on the basis of size and density. The larger and denser components experience the greatest centrifugal force and move most rapidly. They sediment to form a pellet at the bottom of the tube, while smaller, less dense components remain in suspension above, a portion called the supernatant.

VELOCITY SEDIMENTATION

Subcellular components sediment at different rates according to their size after being carefully layered over a dilute salt solution and then centrifuged through it. In order to stabilize the sedimenting components against convective mixing in the tube, the solution contains a continuous shallow gradient of sucrose that increases in concentration toward the bottom of the tube. This is typically 5–20% sucrose. When sedimented through such a dilute sucrose gradient, different cell components separate into distinct bands that can be collected individually.

EQUILIBRIUM SEDIMENTATION

The ultracentrifuge can also be used to separate cellular components on the basis of their buoyant density, independently of their size or shape. The sample is usually either layered on top of, or dispersed within, a steep density gradient that contains a very high concentration of sucrose or cesium chloride. Each subcellular component will move up or down when centrifuged until it reaches a position where its density matches its surroundings and then will move no further. A series of distinct bands will eventually be produced, with those nearest the bottom of the tube containing the components of highest buoyant density. The method is also called density gradient centrifugation.

The sample is distributed throughout the sucrose density gradient.

At equilibrium, components have migrated to a region in the gradient that matches their own density.

A sucrose gradient is shown here, but denser gradients can be formed with cesium chloride that are particularly useful for separating the nucleic acids (DNA and RNA).

The final bands can be collected from the base of the tube, as shown above.